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Acoustic topological phase transition induced by band inversion of
high-order compound modes and robust pseudospin-dependent

transport∗
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A simple two-dimensional phononic crystal hosting topologically protected edge states is proposed to emulate the
quantum spin Hall effect in electronic systems, whose phononic topological phase can be reconfigured through the rotation
of scatters. In particular, the band inversion occurs between two pairs of high-order compound states, resulting in topo-
logical phase transition from trivial to nontrivial over a relatively broad high-frequency range. This is further evidenced
by an effective Hamiltonian derived by the k · p perturbation theory. The phononic topology is related to a pseudo-time-
reversal symmetry constructed by the point group symmetry of two doubly degenerate eigenstates. Numerical simulations
unambiguously demonstrate robust helical edge states whose pseudospin indices are locked to the propagation direction
along the interface between topologically trivial and nontrivial phononic crystals. Our designed phononic systems provide
potential applications in robust acoustic signal transport along any desired path over a high-frequency range.
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1. Introduction
The discoveries of the quantum Hall effect (QHE)[1] and

the quantum spin Hall effect (QSHE)[2] have boosted intense
research of the topological phase transition and associated ro-
bust edge modes,[3–5] which have strikingly revolutionized es-
sential concepts of electric propagation in condensed matter
systems. For the artificial crystals (e.g., photonic crystals and
phononic crystals), both the crystal symmetry and the coupling
strength among the scatterers can be altered flexibly. In con-
sequence, the artificial crystals for classical waves offer an
excellent platform to explore the quantum-like Hall effects
and relevant topological physics. It has been revealed that
the classical wave analogue of the topological insulators can
be achieved in photonic systems,[6–12] acoustic systems,[13–28]

and mechanical systems.[29–37] Basically, the existing two-
dimensional (2D) topological insulators for phononics can
be classified into two categories: those mapping to integer
quantum Hall effect (IQHE) with broken time-reversal (TR)
symmetry,[13–15,29,30] and those mimicking QSHE[17–23,31–33]

or quantum valley Hall effect (QVHE)[24–28,35] with TR in-
variance. In the quest for constructing phononic topological
states based on the IQHE, earlier pioneering approaches relied
on circulating fluid flows,[13,14] spinning gyroscopes,[29,30] or
active resonators[15] to break the TR symmetry. However,
the intrinsic noise and losses accompanying wave transmis-
sion in these nonreciprocal phononic systems, together with
fabrication complexities, hinder their practical applications.

For another type of phononic topological insulators capital-
izing on the physics of QSHE, the key mechanism is to con-
struct the Kramers doublet, which is the prerequisite condi-
tion for the QSHE and guaranteed by the inherent half-integer
spins in electric systems with TR invariance. The early at-
tempts have been focused on elastic wave systems, in which
different polarization modes, namely, the transverse polariza-
tions and longitudinal polarizations, are combined together to
emulate the spins of quantum systems.[31,32] Recently, in the
phononic crystals with double Dirac cones, two pairs of dou-
bly degenerate Bloch modes have been utilized to construct
pseudospin states and corresponding Kramers doublet, and the
pseudospin-dependent unidirectional propagation with strong
robustness has been demonstrated theoretically and experi-
mentally in TR invariant systems.[18–23] In addition to pseu-
dospin, valley degree of freedom (DOF) has been demon-
strated to be an extra controllable DOF for phononics.[24–28,35]

Two valleys with opposite valley-polarizations, which can be
obtained by lifting the degeneracy of the Dirac cones at the
Brillouin zone (BZ) corners, provide one efficient recipe to re-
alize backscattering-immune valley transport.

In order to obtain pseudospin-dependent edge states in the
phononic crystals with double Dirac cones, the vast majority
of previous studies generally take advantage of the band inver-
sion between the pseudospin dipoles and quadrupoles to gen-
erate the topological phase transition from trivial to nontrivial.
By fine adjusting the filling ratio or material parameters of the
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scatterers, trivial and nontrival bandgaps share a common but
relatively narrow low-frequency range. In this paper, we de-
sign a 2D triangular phononic crystal consisting of anisotropic
scatterers and propose a rotating-scatterer mechanism to re-
alize band inversion between two pairs of doubly degenerate
compound states in high-frequency range. More specifically,
snowflake-like scatters are used to engineer a metamolecular
crystal for intriguing band structures by simply rotating the
scatters. In the rotational process, four-fold accidental degen-
eracy of higher-order compound modes appears at the BZ cen-
ter, together with an acoustic quantum spin Hall phase tran-
sition. It is worth mentioning that the common bandgap of
the topologically trivial and nontrivial phases is remarkably
broad and possesses high frequencies. Based on the rotational
symmetry of the primitive cell, we propose a pseudo-TR sym-
metry, which behaves in the same way as TR symmetry in
electronic systems and renders the Kramers doublet in our de-
signed phononic system. Furthermore, an effective Hamil-
tonian is developed to unveil the intrinsic link between the
band inversion and the topological phase transition. Numerical
simulations unambiguously demonstrate the backscattering-
immune edge states that exist at the interface between two
phononic crystals with different topological phases.

2. Triangular acoustic system
As depicted in Fig. 1, the snowflake-like metamolecule

is constituted of one cylindrical rod and six three-legged
rods. The 2D phononic crystal constructed by us possesses
a triangular-lattice structure consisting of the snowflake-like
metamolecules immersed in an air host. All the rods are made
out of iron having mass density ρ = 7670 kg/m3, longitu-
dinal wave velocity c = 6010 m/s, and shear wave velocity
ct = 3231 m/s. The background medium has mass density
ρ0 = 1.21 kg/m3 and speed of sound c0 = 343 m/s. We
consider the following geometrical parameters: the width of
the legs h = 0.03a, the length of the legs d = 0.135a, the ra-
dius of the cylindrical rods r = 0.1a, and the distance between
the centers of cylindrical rods to the centers of three-legged
rods R = 0.27a, with a being the lattice constant. Throughout
this paper, the aforementioned geometrical parameters, i.e.,
the sizes of iron rods, are held constant. The orientation of
the three-legged scatters is decided by the angle θ with re-
spect to the horizontal axis. It is easy to see that if θ = 0◦,
the phononic system has a C6v symmetry, including a six-fold
rotational symmetry and six mirrors. By simply rotating the
three-legged rods, the mirror symmetry of the primitive cell
can be broken and a controllable bandgap with different topo-
logical phases can be achieved.

In our designed phononic crystals, due to the obvious dis-
tinction between the longitudinal wave velocity of iron and

that of air, the shear wave modes inside the iron components
do not alter the fundamental physics of the system and can be
ignored.[38] By reasonably simplifying the wave modes, we
consider the following acoustic wave equation in our periodic
systems:

∇ ·
(

1
ρr (𝑟)

∇p
)
=−ω2

c2
0

p
Br (𝑟)

, (1)

where p is the pressure, ρr = ρ/ρ0 and Br = B/B0 denote the
mass density and bulk modulus relative to those of the air, re-
spectively, and c0 =

√
B0/ρ0 represents the speed of sound in

the air. Similar to the electronic crystals, the solutions of p in
the periodic phononic systems can be written as Bloch wave
functionsΨn𝑘 (𝑟)= un𝑘 (𝑟)ei𝑘·𝑟, with un𝑘 (𝑟) being a periodic
function. The corresponding eigenfrequencies of these Bloch
wave functions are ωn𝑘, whose dependence on the Bloch wave
vector 𝑘 forms the n-th band of the dispersion relation. The
orthogonality relation of these Bloch wave functions can be
expressed as

〈Ψl𝑘|
1
Br

∣∣Ψj𝑘
〉
=

(2π)2

Ω

∫
Ψ
∗

l𝑘(𝑟)
1

Br(𝑟)
Ψj𝑘(𝑟)d𝑟 = δl j, (2)

where the integral is evaluated within a primitive cell with vol-
ume Ω , and δl j is the Kronecker delta.There are many ap-
proaches to solve the wave equation and obtain the disper-
sion relation, i.e., band structure. In this work, we use COM-
SOL Multiphysics (a commercial package based on the finite-
element method) to calculate the band structure numerically.
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Fig. 1. Schematic view of a triangular phononic crystal consisting of
snowflake-like metamolecules. Red dashed hexagon indicates the prim-
itive cell composed by one cylindrical iron rod and six three-legged iron
rods embedded in an air host. a is the lattice constant. a1 and a2 are
the unit vectors. R = 0.27a denotes the distance between the centers
of cylindrical rods to the centers of three-legged rods. The radii of the
center cylindrical rods are r = 0.1a. The width and length of the legs
are h = 0.03a and d = 0.135a, respectively. The angle θ with respect to
the horizontal axis characterizes the orientation of the three-legged iron
rods.

3. Band inversion and topological phase transi-
tion
To precisely explore the coupling physics between the

center rod (marked as meta-atom A) and the six external
rods (marked as meta-atom B) of the snowflake-like structure,
we study the band structure and eigenstates for the proposed
phononic crystal with the rotational angle θ = 23◦, as shown
in Fig. 2. It is observed that four doubly degenerate points (la-
beled as pA, dA, pAsB, and dAsB) emerge in the band structure
at the Γ point. The corresponding eigenfields at the four points
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are illustrated in Fig. 2(b), which reveal that the eigenmodes
of such phononic system contain the center modes (superscript
A) and the external modes (superscript B). As discussed in
Ref. [39], the four pairs of doubly degenerate eigenmodes
can be classified into two types: singleton modes (pA and
dA) and compound modes (pAsB and dAsB). The eigenmodes
pA and dA can be identified as dipolar and quadrupolar res-
onance states in meta-atom A, respectively. The eigenmodes
pAsB combine dipolar states in meta-atom A with monopolar
states in meta-atom B. And the eigenmodes dAsB correspond
to quadrupolar states in meta-atom A and monopolar states in
meta-atom B. It is worth noting that in meta-atom A, a pair
of dipolar modes are accompanied by a pair of quadrupolar
modes, and the dipoles possess opposite symmetry along the
axes x and y of the primitive cell, whereas the quadrupoles
obey identical symmetry along the axes x and y. Here we
use σx,y = +1,−1 to represent even or odd symmetry along
the axe x or y, respectively. For the two compound modes
pAsB, one obeys symmetry σx/σy =−1/+1 and is named px

mode, and the other obeys σx/σy = +1/−1 and is named py

mode. For the two compound modes dAsB, one obeys symme-
try σx/σy =+1/+1 and is named dx2−y2 mode, and the other
obeys σx/σy = −1/−1 and is named dxy mode. By utilizing
the eigenmodes pA and dA, topologically nontrivial bandgap
has been achieved in many researches, but the bandgap is rela-

tively narrow and has low frequencies.[18–20] In the following,
we realize the band inversion between the higher-order com-
pound modes pAsB and dAsB by rotating the three-legged rods.
Specially, we obtain a wider bandgap with high frequencies.
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Fig. 2. (a) Band structure for the triangular phononic crystal with ro-
tational angle θ = 23◦. The right inset shows the primitive cell dia-
gram. The cylindrical rod and three-legged rods are labeled as A and
B, respectively. (b) Pressure field distributions of four pairs of doubly
degenerate eigenstates, corresponding to the points pA, dA, pAsB, and
dAsB from low frequency to high frequency in (a). Dark red and dark
blue denote the positive and negative maxima, respectively.
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Fig. 3. (a)–(c) Band structures for the triangular phononic crystals with different rotational angles: (a) θ = 15◦, (b) θ = 24.85◦, and (c) θ = 35◦.
Green and violet dotted lines represent the bands including high-order compound modes pAsB and dAsB, respectively. (d), (e) Pressure field
distributions of the modes pAsB and dAsB for phononic crystals shown in (a) and (c), respectively. The color patterns show the pressure
distributions, where dark red and dark blue denote the positive and negative maxima, respectively. White arrows indicate the direction and
amplitude of the time-averaged intensity. Black arrows show the spinning of sound intensity around the primitive cell center. The periodic
boundary conditions are applied on the boundaries of the primitive cell.
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As shown in Fig. 3(a), two double degeneracies, one for
the lower bands including the modes pAsB and the other for
the upper bands containing the modes dAsB, appear at the BZ
center for θ = 15◦. Besides, with the increase of the rotational
angle θ , the bandgap gradually decreases, the states pAsB and
dAsB become degenerate at the Γ point for θ = 24.85◦, and a
double Dirac cone induced by four-fold accidental degeneracy
is obtained as illustrated in Fig. 3(b). By further increasing the
rotational angle θ , the four-fold degeneracy is destroyed and
a phononic bandgap is reopened near the double Dirac point
as shown in Fig. 3(c) for θ = 35◦. The corresponding pres-
sure field distributions of the doubly degenerate eigenmodes
at the BZ center are exhibited in Fig. 3(e). It can be seen that
the pressure fields at the lower-frequency side of the bandgap
present dAsB feature, those at the higher-frequency side of the
bandgap display pAsB feature. Namely, a band inversion is
generated by rotating the three-legged rods, resulting in a topo-
logical phase transition from trivial to nontrivial. The trivial
and nontrivial phononic crystals share a broad omnidirectional
bandgap from the dimensionless frequency 1.3475 to 1.5341,
just as demonstrated by the gray dashed lines in Figs. 3(a)–
3(c).

4. Theory analysis of the topological property
According to the group theory, there are two 2D irre-

ducible representations E1 with basis functions (x,y) and E2

with basis functions
(
2xy,x2− y2

)
at the Γ point of a triangu-

lar lattice. The representation E1 has odd parity respective to
spatial inversion operation, coinciding with the symmetry of
doubly degenerate modes pAsB. However, the representation
E2 has even spatial parity, being consistent with the symmetry
of doubly degenerate modes dAsB. Under the rotational op-
erator with angle α , the matrix representation on basis (x,y)
is

𝐷E1 =

(
cosα −sinα

sinα cosα

)
. (3)

By combining the matrix representation of π/3 rotation with
that of 2π/3 rotation, which are marked as 𝐷E1(C6) and
𝐷E1(C

2
6), respectively, we define a unitary operator as follows:

𝑈 =
1√
3

[
𝐷E1(C6)+𝐷E1(C

2
6)
]
=−i𝜎y, (4)

where 𝜎y is the Pauli matrix. Together with complex con-
jugate operator 𝐾, we can construct an anti-unitary operator
𝑇s =𝑈𝐾. It follows that

𝑇 2
s

(
px
py

)
= 𝑇s

(
−py
px

)
=−

(
px
py

)
, (5)

which yields 𝑇 2
s = −𝐼 . Similarly, by utilizing the E2 ma-

trix representations of rotational operators C6 and C2
6 on basis

(2xy,x2− y2), the unitary operator U can be defined as 𝑈 =[
𝐷E2(C6)−𝐷E2(C

2
6)
]
/
√

3 = −i𝜎y. And the corresponding
anti-unitary operator is constructed as 𝑇s = 𝑈𝐾, which also
satisfies 𝑇 2

s = −𝐼 . Obviously, for both E1 and E2 modes, the
anti-unitary operator 𝑇s behaves in the same way as the real
TR symmetry in electronic systems and guarantees the appear-
ance of the Kramers doublet in the current acoustic systems.
Therefore, the 𝑇s can be taken as a pseudo-TR operator. From
the above derivations, it is easy to check that the crystal sym-
metry serves as a crucial role in composing the pseudo-TR
symmetry.

Based on the angular momenta of the wave function of
pressure fields pAsB and dAsB, two pairs of pseudospin states
are given by

p± =
px± i py√

2
, d± =

dx2−y2 ± idxy√
2

, (6)

where the subscripts “+” and “−” represent up and down
pseudospins, respectively. To deliberately demonstrate the
pseudospin characteristics, we examine the real-space distri-
butions of the time-averaged intensity. Figures 3(c) and 3(e)
show that the time-averaged intensity is circling around the
primitive cell center, with the left-hand (right-hand) circular
polarized chirality corresponding to the up (down) pseudospin.

On the basis (p+, p−), the pseudo-TR operator is de-
scribed as

𝑇 ′s =𝑈 ′𝐾, (7)

where

𝑈 ′ = 𝑆+𝑈𝑆 =

(
−i 0
0 i

)
, (8)

with 𝑆 being the transformation matrix between the basis
wave functions (p+, p−) and (px, py). It is straightforward to
see that

𝑇 ′s p± =∓i p∓; 𝑇 ′2s p± =−p±. (9)

Equation (9) clearly shows that the pseudo-TR operator trans-
forms the pseudospin-up state into the pseudospin-down state,
and vice versa. Hence the wave functions (p+, p−) are the two
pseudospin states in the E1 representation of our acoustic sys-
tem. The same conclusion can be obtained on the wave func-
tions (d+,d−), which are the other pair of pseudospin states
associated with the irreducible representation E2.

In order to further understand the topological property
of the band inversion between the high-order compound psu-
dospin states, we construct an effective Hamiltonian in the
vicnity of the BZ center based on the k · p perturbation
theory.[40,41] We denote the four eigenstates at the Γ point as
Γβ (β = 1,2,3,4): Γ1 = px, Γ2 = py, Γ3 = dx2−y2 , and Γ4 = dxy.
The Bloch functions near the Γ point can be expanded as a
linear combination of the four eigenfunctions Γβ

Ψn𝑘 (𝑟) = ∑
β

Anβ (𝑘)ei𝑘·𝑟
Γβ (𝑟). (10)
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Substituting Eq. (10) into Eq. (1) and utilizing the orthog-
onality relation of the four eigenfunctions Γβ (β = 1,2,3,4),
we obtain the effective Hamiltonian around the Γ point

Heff
mn = H ′mn +∑

β

H ′mβ
H ′

βn

ε
(0)
m −ε

(0)
β

, (m,n = 1,2,3,4) , (11)

where ε
(0)
1,2 = ε0

p (ε(0)3,4 = ε0
d ) is the eigenfrequency of Γ1,2

(Γ3,4), and H ′ = 2i
ρr

k ·∇+ ik ·∇ 1
ρr
− k2

ρr
is the k · p perturbation

term. On the basis (p+,d+, p−,d−), the effective Hamiltonian
around the Γ point can be rewritten as

𝐻eff(𝑘) =


G−Dk2 Ck+ 0 0

C∗k− −G+Dk2 0 0
0 0 G−Dk2 Ck−
0 0 C∗k+ −G+Dk2

, (12)

where k± = kx ± iky, and G =
(
ε0

d − ε0
p
)
/2 is the frequency

difference between the E2 and E1 modes. Obviously, G is pos-
itive for the case shown in Fig. 3(a), but negative for the case
shown in Fig. 3(c). C is calculated from the off-diagonal el-
ements of the first-order perturbation term H ′mn = 〈Γm|H ′ |Γn〉
with m = 1,2 and n = 3,4. D is determined by the diago-
nal elements of the second-order perturbation term H ′mβ

H ′
βn,

and is typically negative. Based on Eq. (12), the spin Chern
numbers[11,18,21] can be evaluated as

C± =±1
2
[sgn(G)+ sgn(D)] . (13)

Due to G > 0 and D < 0 in the phononic system shown in
Fig. 3(a), the spin Chern number C± = 0, indicating that
the bandgap is topologically trivial. On the contrary, for the
phononic system shown in Fig. 3(c), G < 0 and D < 0, we ob-
tain the spin Chern number C± = ±1, which reveals that the
bandgap is topologically nontrivial. In brief, we have validated
a topological phase transition from a trivial state to a nontrivial
state via band inversion, which is induced by simply rotating
the three-legged rods.

5. Topologically protected edge staes
Since the topologies for the phononic crystals shown in

Figs. 3(a) and 3(c) are different, there will be unidirectional
acoustic edge states at the interface separating these two sys-
tems. To validate the existence of these topologically protected
edge states, we numerically calculate the projected band struc-
ture for a ribbon-shaped supercell, which comprises topologi-
cally nontrivial crystal after band inversion and topologically
trivial crystal before band inversion, as shown in Fig. 4(a). By
applying the periodic boundary condition on the x and y direc-
tions, we obtain the projected band structure as displayed in
Fig. 4(b). It is found that in addition to the bulk states denoted
by black dotted lines, there are doubly degenerate states span-
ning the bulk bandgap region, which are represented by red

dotted lines. After checking the pressure field distributions for
the eigenstates at points E and F in Fig. 4(b), we discover that
the pressure fields tightly localize at the interface and decay
exponentially into bulk crystals on both sides. This means that
the red dotted lines represent the dispersion relations of the
edge states. Figures 4(c) and 4(d) present the real-space dis-
tributions of the pressure and time-averaged intensity fields on
the upper interface at typical momenta with kx = ±0.1× 4π

3a ,
corresponding to points E and F in Fig. 4(b). It is clear that the
intensity fields indicated by red arrows rotate clockwise and
counterclockwise for the two opposite momenta, respectively.
The chirality of sound intensity around the interface unveils
the characteristics of the pseudospin-down and pseudospin-
up states, coinciding with the feature manifested by Fig. 3.
Here, we illustrate that the upper interface supports a TR pair
of edge states with opposite propagation directions, i.e., a for-
ward edge mode with down pseudospin and a backward edge
mode with up pseudospin. However, the behavior of edge
states is entirely reversed along the lower interface. Appar-
ently, the locking of the pseudospin-up and pseudospin-down
states with counter-propagations of edge modes is analogous
to the property of QSHE in electronic systems.
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Fig. 4. (a) Schematic view of a ribbon-shaped supercell composed of the
topologically nontrivial crystal (θ = 35◦) with its two edges cladded by topo-
logically trivial crystal (θ = 15◦). (b) Projected band structure for the ribbon-
shaped supercell along the Γ K direction. The black and red dotted lines de-
note bulk and edge states, respectively. (c), (d) Pressure field distributions
confined around the interface between two domains of distinct topology at
points E and F indicated in (b), respectively. The corresponding intensity
is displayed in the magnified views. The color patterns show the pressure
distributions, where dark red and dark blue denote the positive and negative
maxima, respectively. Red arrows show the direction and amplitude of the
time-averaged intensity. Black arrows show the spinning of sound intensity
around the primitive cell center. The periodic boundary conditions are applied
on the x and y directions of the ribbon-shaped supercell.
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As discussed in the previous section, it is possible for
us to take advantage of the pseudospin Hall effect to realize
acoustic helical edge states, i.e., utilizing the pseudospin DOF
to control the propagation direction. The pseudospin speci-
fied edge states can be selectively excited by a point-like chiral
source, which is an eight-antenna array with a π/4 phase de-
lay between the neighboring ones as shown in Fig. 5(a). When
the phases of these antennas gradually decrease clockwise
(anticlockwise), the pseudospin-down (pseudospin-up) mode
can be stimulated. Figures 5(b) and 5(c) display the pressure
field distributions excited by the point-like chiral sources with
clockwise and anticlockwise phase delays, respectively, in the
air. In order to demonstrate the unidirectional propagation and
robustness against perturbations of the pseudospin-dependent
edge states, we combine the topologically trivial crystal with
nontrivial crystal to construct a Z-shaped interface. As shown
in Figs. 5(d) and 5(e), a point-like source with operating fre-
quency f ≈ 1.4027c0/a, which corresponds to the frequency
of the E and F points in Fig. 4(b), is placed at the location in-
dicated by white circle. We observe that when the source has
a clockwise phase delay, the acoustic wave propagates along
the Z-shaped interface towards the upper left direction, mani-
festing the pseudospin-down edge state. On the contrary, the
acoustic wave excited by the point-like source with anticlock-
wise phase delay propagates along the Z-shaped interface to-
wards the lower right direction, revealing the pseudospin-up
edge state. Besides, the simulated results also make clear that
even though sharp bends are introduced at the interface, these
pseudospin-dependent edge states robustly propagate along
the Z-shaped interface without backscattering. It is evident
that based on the pseudospin Hall effect induced by band in-
version, we can manipulate acoustic waves to propagate along
a selected path and direction without resorting to breaking the
TRS.

(a)
max

-max

(b)

(c)

(d) (e)

Fig. 5. (a) Schematic view of a point-like chiral source consisting of
eight antennas, which has a phase difference of π/4 between the neigh-
boring antennas. (b), (c) Pressure field distributions excited by the
point-like chiral sources with clockwise and anticlockwise phase de-
lays, respectively, in the air. (d), (e) Robustly unidirectional propaga-
tion of edge states along the Z-shaped interface between the topologi-
cally nontrivial and trivial crystals. The excitations in (d) and (e) corre-
spond to the sources shown in (b) and (c), respectively. The white circle
indicates the position of the point-like chiral source with operating fre-
quency f ≈ 1.4027c0/a, whose phase delay direction is represented by
the black arrow. The whole structure is surrounded by the perfectly
matched layers to absorb outgoing waves.

6. Conclusion
We have designed a 2D acoustic topological insulator

analogous to the QSHE in electronic systems. The topolog-
ical insulator is a triangular phononic crystal consisting of
snowflake-like metamolecules embedded in an air host. By
rotating the three-legged rods within the primitive cell, band
inversion is achieved between two pairs of high-order com-
pound modes (i.e., doubly degenerate modes pAsB and dAsB),
and a noticeable topological bulk bandgap is obtained in the
high-frequency range. Based on the point group symmetry
of pAsB and dAsB eigenstates at the Γ point, we construct
a pseudo-TR symmetry, which renders the Kramers doublet
of acoustic pseudospins. By utilizing k · p perturbation the-
ory, we propose an effective Hamiltonian around the Γ point,
which unveils that the band inversion induces a topological
phase transition from trivial to nontrivial. Numerical simu-
lations explicitly manifest the unidirectional propagation and
backscattering-immune property of the pseudospin-dependent
edge states. The topological phononic crystal designed by us
can be fabricated relatively easily, and its topological phase
can be reconfigured just by simply changing the orientation
of the three-legged rods. This is extremely advantageous for
the potential applications in controlling acoustic waves along
any desired path without backscattering. And the mechanism
of band inversion between high-order compound states can be
directly extended to electromagnetic wave systems.
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